Volume : 3, Issue : 3, JUL 2019

DATA PREPROCESSING IN SENTIMENT ANALYSIS USING TWITTER DATA

T. Nikil Prakash, Dr. A. Aloysius

Abstract

Data preprocessing is an important tool for Data Mining (DM) algorithm. Twitter data is an unstructured data set it is a collection of information from people entered his/her feelings, opinion, attitudes, products review, emotions, etc. This type of information is growing day by day in the internet. May companies want to analyze customers opinions which like the product and the services. The Proposed work to analyses the twitter trending information and collect various different information form the users. It improves the accuracy of Twitter data. This work easy to identify the people reaction or opinion. Additionally, improve the better performance for data preprocessing tool.

Keywords

Twitter, Data preprocessing, Sentiment analysis, Data cleaning, Data preparation.

Article : Download PDF

Cite This Article

Article No : 20

Number of Downloads : 0

References

  • Jayaram Hariharakrishnan, Mohanavalli.S, Srividya, and Sundhara Kumar K.B “Survey of Pre-processing Techniques for Mining Big Data,” IEEE International Conference on Computer, Communication, and Signal Processing (ICCCSP-2017), Year: 2017
  • Chen Min, Shiwen Mao, and Yunhao Liu. "Big data: a survey" Mobile Networks and Applications, PP: 171-209. 2014.
  • Przemyslaw Grzegorzewski and Andrzej Kochanski “Data Preprocessing in Industrial Manufacturing” Springer Nature Switzerland AG, DOI: https://doi.org/10.1007/978-3-030-03201-2_3, Year: 2019
  • STAMATIOS-AGGELOS N. ALEXANDROPOULOS, SOTIRIS B. KOTSIANTIS and MICHAEL N. VRAHATIS “Data preprocessing in predictive data mining” Cambridge University Press, 34, 1–33.  DOI: 10.1017/S026988891800036X, Year: 2019
  • Salvador García, Sergio Ramírez-Gallego, Julián Luengo, Jose Manuel Benítez, and Francisco Herrera “Big data preprocessing: methods and Prospects” Big Data Analytics, DOI: 10.1186/s41044-016-0014-0, Pp: 1-9, Year: 2016
  • Astorino, E. Gorgone, M. Gaudioso & D. Pallaschke “Data preprocessing in semi-supervised SVM classification” DOI: 10.1080/02331931003692557, VOL: 60:1-2, PP: 143-151, Year: 2017
  • Matthew J. Denny and Arthur Spirling “Text Preprocessing For Unsupervised Learning: Why It Matters, When It Misleads, And What To Do About It” DOI: https://doi.org/10.1017/pan.2017.44, Year: 2017
  • Vivek Kumar, Abhishek Verma, Namita Mittal and Sergey V. Gromov “Anatomy of Preprocessing of Big Data for Monolingual Corpora Paraphrase Extraction: Source Language Sentence Selection” Springer Nature Singapore Pte Ltd, DOI: https://doi.org/10.1007/978-981-13-1501-5_43, Year: 2019
  • Shichao Zhang, Chengqi Zhang and Qiang Yang “Data preparation for data mining Data preparation for data mining,” Applied Artificial Intelligence, DOI: 10.1080/713827180 VOL: 17:5-6, PP 375-381, Year: 2018
  • B. Kotsiantis, D. Kanellopoulos and P. E. Pintelas “Data Preprocessing for Supervised Learning“ INTERNATIONAL JOURNAL OF COMPUTER SCIENCE VOLUME 1, ISSN 1306-4428, Year: 2006